8,943 research outputs found

    Competing Nematic, Anti-ferromagnetic and Spin-flux orders in the Ground State of Bilayer Graphene

    Get PDF
    We analyze the phase diagram of the Bilayer graphene (BLG) at zero temperature and doping. Assuming that at the high energies the electronic system of BLG can be described within a weak coupling theory (consistent with the experimental evidence), we systematically study the evolution of the couplings with going from high to low energies. The divergences of the couplings at some energies indicates the tendency towards certain symmetry breakings. Carrying out this program, we found that the phase diagram is determined by microscopic couplings defined on the short distances (initial conditions). We explored all plausible space of these initial conditions and found that the three states have the largest phase volume of the initial couplings: nematic, antiferromagnetic and spin flux (a.k.a quantum spin Hall). In addition, ferroelectric and two superconducting phases and appear only near the very limits of the applicability of the weak coupling approach. The paper also contains the derivation and analysis of the renormalization group equations and the group theory classification of all the possible phases which might arise from the symmetry breakings of the lattice, spin rotation, and gauge symmetries of graphene.Comment: 19 pages, 16 figure

    Entanglement Measure for Composite Systems

    Full text link
    A general description of entanglement is suggested as an action realized by an arbitrary operator over given disentangled states. The related entanglement measure is defined. Because of its generality, this definition can be employed for any physical systems, pure or mixed, equilibrium or nonequilibrium, and characterized by any type of operators, whether these are statistical operators, field operators, spin operators, or anything else. Entanglement of any number of parts from their total ensemble forming a multiparticle composite system can be determined. Interplay between entanglement and ordering, occurring under phase transitions, is analysed by invoking the concept of operator order indices.Comment: 6 pages, Revte

    Kinetics of the Phase Separation Transition in Cold-Atom Boson-Fermion Mixtures

    Full text link
    We study the kinetics of the first order phase separation transition in boson-fermion cold-atom mixtures. At sufficiently low temperatures such a transition is driven by quantum fluctuations responsible for the formation of critical nuclei of a stable phase. Based on a microscopic description of interacting boson-fermion mixtures we derive an effective action for the critical droplet and obtain an asymptotic expression for the nucleation rate in the vicinity of the phase transition and near the spinodal instability of the mixed phase. We also discuss effects of dissipation which play a dominant role close to the transition point, and identify the regimes where quantum nucleation can be experimentally observed in cold-atom systems.Comment: 4 pages 1 figure, typos correcte

    Possible types of the evolution of vacuum shells around the de Sitter space

    Full text link
    All possible evolution scenarios of a thin vacuum shell surrounding the spherically symmetric de Sitter space have been determined and the corresponding global geometries have been constructed. Such configurations can appear at the final stage of the cosmological phase transition, when isolated regions (islands) of the old vacuum remain. The islands of the old vacuum are absorbed by the new vacuum, expand unlimitedly, or form black holes and wormholes depending on the sizes of the islands as well as on the density and velocity of the shells surrounding the islands.Comment: 3 pages, 1 figur

    Making an analogy between a multi chain interaction in charge density wave transport and the use of wavefunctionals to form soliton- anti soliton pairs

    Full text link
    A numerical simulation shows that a massive Schwinger model used to formulate solutions to charge density wave (CDW) transport is insufficient for transport of soliton- anti soliton pairs through a pinning gap model of CDW transport. However, a model Hamiltonian with Peierls condensation energy used to couple adjacent chains (or transverse wave vectors) permits formation of soliton - anti soliton pairs that could be used to transport CDW through a potential barrier. There are analogies between this construction and the false vacuum hypothesis used for showing a necessary and sufficient condition for wave functionals for formation of soliton - anti soliton pairs. This can be established by either use of the Bogomol'nyi inequality or through an experimental artifact resulting through use of the false vacuum hypothesis to obtain a proportional distance between the soliton - anti soliton pair charge centersComment: 17 pages, 3 figure

    Spontaneously Broken Spacetime Symmetries and Goldstone's Theorem

    Get PDF
    Goldstone's theorem states that there is a massless mode for each broken symmetry generator. It has been known for a long time that the naive generalization of this counting fails to give the correct number of massless modes for spontaneously broken spacetime symmetries. We explain how to get the right count of massless modes in the general case, and discuss examples involving spontaneously broken Poincare and conformal invariance.Comment: 4 pages; 1 figure; v2: minor corrections. version to appear on PR

    Gravitation Interaction and Electromagnetic Interaction in the Relativistic Universe with Total Zero and Local Non-Zero Energy

    Get PDF
    In the model of flat expansive homogeneous and isotropic relativistic universe with total zero and local non-zero energy the gravitation energy of bodies and the elecromagnetic energy of charged bodies can be localised.Comment: LaTeX, 10 pages, 1 figur

    Cyclotron enhancement of tunneling

    Full text link
    A state of an electron in a quantum wire or a thin film becomes metastable, when a static electric field is applied perpendicular to the wire direction or the film surface. The state decays via tunneling through the created potential barrier. An additionally applied magnetic field, perpendicular to the electric field, can increase the tunneling decay rate for many orders of magnitude. This happens, when the state in the wire or the film has a velocity perpendicular to the magnetic field. According to the cyclotron effect, the velocity rotates under the barrier and becomes more aligned with the direction of tunneling. This mechanism can be called cyclotron enhancement of tunneling

    U_A(1) Anomaly at high temperature: the scalar-pseudoscalar splitting in QCD

    Full text link
    We estimate the splitting between the spatial correlation lengths in the scalar and pseudoscalar channels in QCD at high temperature. The splitting is due to the contribution of the instanton/anti-instanton chains in the thermal ensemble, even though instanton contributions to thermodynamic quantities are suppressed. The splitting vanishes at asymptotically high temperatures as ΔM/M(ΛQCD/T)b\Delta M/M\propto (\Lambda_{QCD}/T)^b, where bb is the beta function coefficient.Comment: 5 p
    corecore